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Abstract

Diffusion models have been extensively used for various computer vi-

sion tasks such as image denoising, super-resolution, and inpainting.

Due to their ability to model complex data distributions, researchers

have started exploring their potential for audio generation tasks.

In this work, we propose two novel diffusion models for audio gener-

ation: the cross-diffusion and the double-diffusion. Our models are

designed to be memory and speed efficient, which makes them suitable

for real-time applications.

Cross-diffusion technique allows for conditional generation of high-

quality audio without compromising on the output quality. We eval-

uated the effectiveness of this technique for instrument style transfer

and generating background music for a given piece of lyrical vocal

audio. The double-diffusion technique, on the other hand, is designed

to produce an unconditional paired set of instrumental sounds for

chorus generation. In both techniques, models for each instrument

can be trained independently unlike the existing conditional diffusion

models. We have also analyzed the effect of different hyperparameters

on the performance of the model.

The experimental results show that the proposed models are com-

parable in terms of perceptual quality of the generated audio when

compared to the existing models while being significantly simple in

terms of architecture and having lower memory and computational

requirements.

While cross-diffusion has the potential to be used for various appli-

cations like music production and sound design, double-diffusion can

offer creative starting points for music producers.
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Chapter 1

Introduction

1.1 Generative Artificial Intelligence

Generative models have seen a significant boost in recent years due to the ad-

vancements in deep learning and artificial intelligence like Generative Adversarial

Networks in Goodfellow et al. [2020] and Diffusion Models in Ho et al. [2020].

These models have the ability to produce new and original content by learn-

ing from existing datasets and have been used for a wide range of applications,

including computer vision, natural language processing, and music generation.

Generative models can be classified into two categories: unsupervised and super-

vised models Bishop and Nasrabadi [2006]; Goodfellow et al. [2016, 2020]; Kingma

and Welling [2013]; Kulkarni et al. [2015]; LeCun et al. [2015].

Unsupervised generative models Blei et al. [2017]; Hinton [2002]; Hinton et al.

[2006] learn to generate data without any supervision from the training dataset.

These models attempt to learn the underlying data distribution by modeling the

joint probability distribution of the data. Examples of unsupervised generative

models Goodfellow et al. [2020] include Variational Autoencoders (VAEs) Kingma

and Welling [2013], Generative Adversarial Networks (GANs), and Autoregressive

Models Van den Oord et al. [2016]. These models have been used for various

applications, such as image generation, image translation, and image inpainting.

Supervised generative models Gatys et al. [2016]; Mirza and Osindero [2014];

Sohn et al. [2015]; Yu et al. [2017], on the other hand, learn to generate data by
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conditioning on a specific input or label. These models are trained using super-

vised learning, where the input data is labeled with a specific output. Examples

of supervised generative models include Conditional VAEs Sohn et al. [2015] and

Conditional GANs Mirza and Osindero [2014]. These models have been used for

tasks such as text-to-speech conversion, style transfer, and image captioning.

One class of generative models that has recently gained a lot of attention in the

computer vision community is diffusion models . Diffusion models, also known as

denoising diffusion probabilistic models, are a class of generative models that have

shown remarkable success in generating high-quality images and videos. These

models are based on the idea of iteratively diffusing a noise signal to generate a

sample from the target distribution.

Diffusion models perform the generative process by adding noise to the input

data and then learning to remove it through a series of diffusion steps. At each

diffusion step, the noise level is gradually reduced until the input data is trans-

formed into a sample from the target distribution Ho et al. [2020]. This approach

allows diffusion models to capture complex patterns and structures in the data,

leading to high-quality and diverse samples.

Diffusion models have achieved remarkable success in computer vision tasks,

including image generation, image inpainting, and image denoising Dhariwal and

Nichol [2021]. One of the key advantages of diffusion models over other generative

models is their ability to generate samples that are not only visually appealing

but also exhibit a high degree of diversity. This is particularly useful in scenar-

ios where the goal is to generate a wide range of samples that can capture the

variability in the data distribution.

1.2 Audio Generation

The success of diffusion models is not limited to the computer vision domain.

Recently, there has been growing interest in applying diffusion models to other

domains, including music generation Zhang et al. [2023]. The potential benefits

of diffusion models in the audio domain are substantial, given the similarities

between the temporal and spectral structures of images and music Dhariwal and

Nichol [2021]. By extending the diffusion framework to the audio domain, re-
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searchers can generate new and original music compositions.

One application of diffusion models in the audio domain is chorus generation.

Chorus generation involves the generation of multiple copies of an audio signal

with slight delays and frequency variations. This process can create a richer and

fuller sound, enhancing the listening experience for the listener. To generate a

chorus, the diffusion model is trained to learn the distribution of a single audio

signal and then to add variations to the signal by diffusing noise.

Another application of diffusion models in the audio domain is instrument

style transfer. Instrument style transfer involves transforming the characteristics

of an audio signal to resemble those of a different instrument. This task requires

the model to learn the underlying structure of the audio signal and generate

new audio samples that are coherent and natural-sounding. To achieve this, the

diffusion model is trained to learn the distribution of a specific instrument’s sound

and then to transform the input audio signal into the desired instrument’s sound.

Despite the potential benefits of diffusion models in the audio domain, there

are several challenges that need to be addressed before these models can achieve

the same level of success as in the computer vision domain. One of the major

challenges is the complexity of the audio signal, which has both temporal and

spectral components. This complexity makes it difficult to learn the underly-

ing distribution of the data and generate coherent and natural-sounding audio

samples.

To overcome this challenge, researchers have proposed various modifications

to the diffusion model architecture, such as incorporating convolutional and re-

current neural networks Mehri et al. [2016]. These modifications allow the model

to capture the temporal and spectral components of the audio signal and generate

high-quality audio samples.

Another challenge in applying diffusion models to the audio domain is the lack

of large-scale audio datasets. Unlike image datasets, which are readily available,

audio datasets are often smaller in size and may not contain enough diversity

to capture the full range of audio signals. This makes it difficult to train and

evaluate diffusion models on audio data.

To address this challenge, researchers have proposed various techniques for

augmenting and synthesizing audio datasets Bird et al. [2020]; Wei et al. [2020].
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One approach is to use data augmentation techniques, such as pitch shifting

and time stretching Raffel and Ellis [2014], to create additional variations of the

audio signals. Another approach is to use synthesis techniques, such as additive

synthesis and subtractive synthesis, to generate new audio signals that can be

used to train and evaluate diffusion models Charles [2008].

Despite these challenges, the potential of diffusion models in the audio domain

is immense. With the increasing availability of large-scale audio datasets and the

development of more advanced diffusion model architectures, it is expected that

diffusion models will become a powerful tool for audio generation tasks in the

future.
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Chapter 2

Diffusion Models

Diffusion models are a type of stochastic process that describes the dynamics of

a random variable over time. Diffusion models are particularly powerful because

they can capture complex dependencies and generate high-quality samples by

gradually diffusing noise through a sequence of transformations. This chapter

aims to provide a comprehensive overview of diffusion models and their appli-

cations. We begin with a theoretical foundation of diffusion models, covering

probability theory, stochastic processes, and Markov Chain Monte Carlo.

2.1 Overview

Diffusion models operate by applying Gaussian noise incrementally to the input

image through a sequence of T steps known as the forward process. Forward

diffusion is used to produce the targets for the neural network, namely the image

after undergoing t < T noise steps.

Subsequently, a neural network is trained to invert the noise process and re-

cover the original data. By effectively modeling the reverse process, the generative

model is able to produce novel data, referred to as the reverse diffusion process

or the sampling process.
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Figure 2.1: Forward and reverse diffusion processes Das [2021]

2.2 Forward Diffusion Process

Diffusion models are latent variable models that operate in a hidden continuous

feature space. This feature space is referred to as ”latent” because it is not di-

rectly observed. Consequently, diffusion models share similarities with variational

autoencoders (VAEs).

Unlike flow-based models, diffusion models utilize a Markov chain consisting

of T steps. In this context, a Markov chain refers to a process where each step

only depends on the previous one, which is a mild assumption. Additionally,

diffusion models are not restricted to specific types of neural networks.

When presented with a data-point x0 sampled from the real data distribution

q(x) (where x0 ∼ q(x)), diffusion models define a forward diffusion process by

adding noise. At each step of the Markov chain, Gaussian noise with variance βt

is added to the previous latent variable xt−1, resulting in a new latent variable xt

with distribution q(xt|xt−1).

Thus, we have the following equation for the forward diffusion process:

q(xt|xt−1) = N
(
xt;xt−1

√
1 − βt, βtI

)
(2.1)

It turns out that the forward diffusion process need not be simulated for

each time step as there is a closed-form solution for obtaining xt. We show the

derivation for the same:
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q(xt|xt−1) =
√

1 − βtxt−1 +
√
βtε1

=
√
αtxt−1 +

√
1 − αtε1

q(xt|xt−2) =
√
αt

(√
αt−1xt−2 +

√
1 − αt−1ε2

)
+
√

1 − αtε1

=
√
αtαt−1xt−2 +

√
αt(1 − αt−1)ε2 +

√
1 − αtε1

=
√
αtαt−1xt−2 +

√
1 − αtαt−1ε

...

Thus, we obtain the closed-form solution for obtaining the diffused image xt

directly from x0.

q(xt|x0) =
√
αtx0 +

√
1 − αtε (2.2)

2.3 Reverse Diffusion Process

As T approaches ∞, the distribution of the latent variable xT becomes almost

isotropic Gaussian. This means that if we are able to learn the reverse distri-

bution q(xt−1|xt), we can sample xT from N(0, I), run the reverse process, and

obtain a sample from q(x0), which generates a new data point from the original

data distribution. The challenge, however, is how to model the reverse diffusion

process.

It turns out that computing q(xt−1|xt) is intractable. Thus, we approxi-

mate q(xt−1|xt) with a parameterized model pθ which could be a neural network.

q(xt−1|xt) will also be a Gaussian distribution. Thus, for small enough βt, we can

parameterize pθ by its mean and variance as follows:

pθ (xt−1|xt) = N (xt−1;µθ(xt, t),Σθ)

7



Since the goal is to have x0 belong to the underlying distribution, we can

maximize the log likelihood and define the loss function as − log (pθ(x0))

The likelihood is intractable since we cannot directly evaluate the distribution

q(xt|xt−1) for each t. Instead, we can use a tractable approximation to the like-

lihood, which is the evidence lower bound (ELBO) obtained using a variational

autoencoder (VAE) framework. The derivation for the same can be referred in

Appendix A.1. The derivation leads to the following loss function and denoising

step:

Lt = ∥ε− εθ(xt, t)∥2 (2.3)

xt−1 =
1

√
αt

(
xt −

βt√
1 − αt

εθ(xt, t)

)
+
√
βtε (2.4)

Ho et al. [2020] proposed to keep the variance fixed and train the neural

network to only learn the mean in diffusion models. This approach was fur-

ther enhanced by Dhariwal and Nichol [2021] by allowing the network to learn

the covariance matrix as well, leading to better results. The reason behind this

improvement is that modeling the covariance matrix can capture more complex

relationships between the data and the diffusion process. By allowing the net-

work to learn the full covariance matrix, the model can better capture the true

distribution of the data, leading to higher quality samples.

In our discussion of the theoretical setting of diffusion models and the proofs,

we have restricted ourselves to the simple approach of keeping the variance fixed.

However, the generalization follows very naturally. The pseudo code for learning

process can be referred from Algorithm 1. The pseudo code for sampling process

can be referred from Algorithm 2.

Algorithm 1 Training
1: repeat
2: x0 ∼ q(x0)
3: t ∼ U({1, . . . , T})
4: ε ∼ N(0, I)

5: Take gradient step ∇θ

∥∥ε− εθ
(√

αtx0 +
√

1 − αtε, t
)∥∥2

6: until converged

8



Algorithm 2 Sampling

1: xT ∼ N(0, I)
2: for t = T, . . . , 1 do
3: if t > 1 then
4: z ∼ N(0, I)
5: else
6: z = 0
7: end if
8: xt−1 = 1√

αt

(
xt − 1−αt√

1−αt
εθ(xt, t)

)
+ σtz

9: end for
10: return x0

2.4 Network Architecture

Although, any neural network architecture can be used for approximating the

distribution parameters, we present an overview of the architectures proposed in

literature that have been found to work well while laying special emphasis on the

distinctive features of these networks.

The first thing to notice is that the input and output dimensions of the net-

work must be of the same size. Ho et al. [2020] utilized a U-Net architecture

Ronneberger et al. [2015] to accomplish this goal. A U-Net is a symmetric archi-

tecture with input and output of the same spatial size that employs skip connec-

tions between encoder and decoder blocks of corresponding feature dimension.

Typically, the input image is initially downsampled and then upsampled until it

returns to its original size.

In diffusion models, the diffusion timestep t specifies how much Gaussian noise

is added to the input image in the forward process. To capture this positional

information, a sinusoidal position embedding is added to one or multiple residual

blocks of the neural network. The sinusoidal position embedding is a technique

commonly used in modeling spatial/temporal relationships in the data Vaswani

et al. [2017]. It involves adding sinusoidal functions of different frequencies and

phases to the input data. These sinusoids can capture different patterns in the

data at different spatial scales, allowing the network to learn more robust rep-

resentations. By adding a sinusoidal position embedding to a residual block in

9



Figure 2.2: A U-Net architecture that takes a single-channel 572×572 image and
outputs a dual-channel 388 × 388 image Ronneberger et al. [2015]

the diffusion model, the network can learn to capture the timestep representation

and use it in predicting the noise.

2.5 Conditional Diffusion Models

Conditioning the sampling process is a vital factor in image generation, also

known as guided diffusion. Some methods have incorporated image embeddings

into diffusion to manipulate the generation process Dhariwal and Nichol [2021];

Sohn et al. [2015]. The guidance concept mathematically refers to conditioning

the prior data distribution p(x) with a condition y, such as class labels or an

image/text embedding, leading to the distribution p(x|y). To make a diffusion

model pθ a conditional diffusion model, we can introduce conditioning information

y at each diffusion step as follows:

pθ(x0:T |y) = pθ(xT )
T∏
t=1

pθ(xt−1|xt, y) (2.5)
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Chapter 3

Audio – Representation and

Processing

Humans primarily communicate through verbal interactions – by speaking and

listening. Sound is the phenomenon that makes all of this possible. In this

chapter, we will understand the basics of sound and digital audio.

3.1 Acoustics

Sound is a form of energy that travels in the form of waves. Sound, being a

mechanical wave, cannot travel without matter. Sound waves are created when

the source vibrates causing changes in the air pressure. This pressure propagates

through the medium carrying the wave from one place to another. Human ears

can sense these vibrations and convert them into electrical signals that the brain

interprets as sound.

3.1.1 Characteristics of Sound Waves

A sound wave has four characteristics

• Velocity: It is the speed and direction in which the sound wave is propa-

gating. The speed of a sound wave is determined by the medium in which

it travels. For example, the speed of sound in dry air at room temperature

is 343 meters per second.
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• Frequency: It is the number of complete cycles of pressure changes that

occur in unit time. Frequency is measured in Hertz (Hz). When expressed

in Hertz, the frequency is the number of pressure change cycles completed

in one second by a sound wave. Humans can hear sounds in the frequency

range of 20 Hz to 20K Hz Frequency of a sound wave is perceived by the

human ear as the pitch. A high-frequency sound has a higher pitch and

sounds shrill while a lower-frequency sound is softer.

• Wavelength: Wavelength is the distance between two successive peaks or

troughs in a sound wave. It is related to the frequency and the speed of the

sound. If v is the speed, f is the frequency, and λ is the wavelength, then

the relation between these is given by eq. (3.1).

v = f × λ (3.1)

• Amplitude: Amplitude is the magnitude of pressure changes in a sound

wave and determines the loudness of the sound. The larger the amplitude,

the louder the sound. Amplitude is usually measured in decibels (dB),

which is a logarithmic unit that compares the pressure of a sound wave to

a reference pressure. The higher the amplitude of a sound wave, the louder

it is perceived to be.

3.1.2 Fourier Transform

Fourier transform is a fundamental mathematical technique that is used to break

a signal into simpler components. The Fourier transform works by decomposing

a signal into a series of sine and cosine waves, each with a different frequency and

amplitude. This is done by representing the signal as a sum of complex exponen-

tial functions, which are then analyzed using Fourier analysis. In practical terms,

the Fourier transform allows us to analyze the frequency content of a signal and

identify the individual components that make it up. For example, in the context

of sound waves, the Fourier transform can be used to identify the fundamental

frequency of a musical note and the harmonics that contribute to its timbre.

12



3.1.3 Spectrogram

A spectrogram is a visual representation of the frequency content of a signal over

time. It is a type of frequency-domain representation that displays the distri-

bution of frequency components of a signal with respect to time. Spectrogram

is obtained by breaking a sound wave into its sinusoidal components and then

plotting the magnitude of each component with time.

1 2 3 4 5
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0
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6000

8000

10000
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Figure 3.1: An example spectrogram showing the time on x-axis and frequencies
on y-axis

Spectrograms are commonly used in the field of audio processing to analyze

and visualize the frequency content of sound waves. They are particularly useful

for identifying patterns and features in sound that are difficult to detect by ear

alone.

3.2 Digital Audio

Digital audio is the representation of sound in a digital format which can be stored

and manipulated using computers. In contrast to analog audio, which represents

sound as continuous waveforms, digital audio breaks down sound into discrete

samples. To convert an analog signal to digital, analog-to-digital converter (ADC)

is used. Similarly, digital-to-analog converter (DAC) is used when the digital

signal has to be converted to analog.

13



In modern computer systems, digital audio is typically represented using pulse

code modulation (PCM), which works by sampling the analog signal at regular

intervals and quantizing the amplitude of each sample into a digital value. The

resulting digital values are then stored as binary data, typically using 16 or 24 bits

per sample. The sampling frequency (also called sample rate) is usually dictation

by Nyquist criteria.

3.2.1 Fast Fourier Transform (FFT)

Fast Fourier Transform (FFT) is an efficient algorithm that calculates the Fouier

transform of a discrete signal such as digital audio. This is achieved by breaking

the signal down into smaller parts and calculating the Fourier Transform of each

part separately, then recombining the results. In practice, the FFT is much faster

than the FT and is frequently used in digital signal processing applications.

3.2.2 Digital Spectrogram

There are different algorithms available for spectrogram generation from audio.

Constant Q-Transform (CQT) spectrogram and Mel spectrogram are popular

choices for converting audio to spectrogram. To turn a spectrogram back into

audio, the inverse Fourier transform is used to convert the frequency-domain

representation back into the time domain. This process is known as synthesis and

requires some additional steps, such as windowing and overlap-add processing, to

avoid artifacts in the resulting audio signal.

3.3 Music

Music is an audio signal that is composed of a mixture of sound sources, including

vocals and instruments. The audio signal can be analyzed using techniques such

as Fourier analysis to decompose it into its constituent frequencies.

Vocals in a song typically consist of a sequence of phonemes, which are the

individual sounds that make up words. These phonemes are produced by the

vocal cords, and their frequencies are typically concentrated in the range of 100

Hz to 1 kHz. The sound of a voice can be modified by changing the shape of

14



the mouth and the position of the tongue and lips, which alters the resonant

frequencies of the vocal tract.

Instruments in a song can be broadly categorized as either pitched or un-

pitched. Pitched instruments produce notes that have a clear frequency, while

unpitched instruments produce sounds that do not have a clear pitch. Pitched

instruments, such as guitars or pianos, produce a sequence of notes that can be

analyzed using Fourier analysis to determine the fundamental frequency of each

note.

The overall composition of a song is determined by the arrangement of the

vocals and instruments, which can be manipulated in various ways to create

different effects. For example, vocals can be harmonized with each other or with

the instruments to create a sense of unity, while instruments can be played in

unison or in counterpoint to create a sense of tension or complexity. The use

of effects such as reverb or distortion can also dramatically alter the sound of a

song.
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Chapter 4

Methodology

4.1 Preparing Dataset

In order to use diffusion models for audio, the first step is to prepare the dataset.

For this purpose, long audios (∼10 hours) of each instrument, violin and guitar,

were taken from the internet. These audios were then split into smaller chunks

of 5 seconds each to facilitate processing.

Next, each of the shorter audio chunks was converted to its spectrogram rep-

resentation. Spectrograms are a visual representation of the frequency content of

a signal as it changes over time. In other words, they show how much of each

frequency is present in the audio signal at different points in time.

To create a spectrogram, we use a mathematical technique called the Fourier

transform to convert the audio signal from the time domain to the frequency

domain. The resulting spectrum is then divided into small sections called ”bins,”

and the magnitude of each bin is plotted over time to create a two-dimensional

image. The resulting image is a representation of the audio signal that allows us

to visualize its frequency content over time.

Once the audio chunks have been converted to spectrogram representations,

they can be used to train diffusion models for audio. These models can be used

to generate novel audio samples that are similar to the original audio data, but

with added variations and modifications.
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4.2 Diffusion Framework

In this section, we describe the network architecture, variance schedule, learning

rate schedule and loss function used for training the diffusion model.

4.2.1 Network Architecture

The network consists of a type of two-dimensional encoder-decoder architecture.

The encoder part of the network consists of 2D down blocks while the decoder

part consists of 2D up blocks. Each down block consists of residual network layers

and a downsampling layer whereas each up block consists of residual network

layers and an upsampling layer Smith [2023]. Here, downsampling is done by

using a 2D convolution layer and upsampling is achieved by interpolation and 2D

convolution.

Down Block
2D

Attention Down
Block 2D

Up Block
2D

Attention Up
Block 2D

128

128

256

256

512

512

128

128

256

256

512

512

1

Input

1

Ouput

Figure 4.1: High-level U-Net architecture used for the diffusion model, showing
the type of layers and the number of channels
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4.2.2 Variance Schedule

The DDIM schedule Song and Ermon [2020] is used as the variance schedule

to reduce the effect of added noise on the generated samples over the course

of training. To achieve this, the noise level is reduced using a cosine annealing

schedule. The cosine annealing schedule gradually reduces the standard deviation

of the noise to zero over the course of the training. This allows the model to learn

more effectively at the beginning of the training, when the noise level is high, and

generate more accurate and diverse samples as the noise level decreases.

4.2.3 Learning Rate Schedule

The cosine learning rate schedule Vaswani et al. [2017] with warm-up is used which

consists of two parts: a warmup period and a cosine annealing period. During the

warmup period, the learning rate is gradually increased from a small value to the

base learning rate. This helps to stabilize the training process and prevent the

model from getting stuck in a poor local minimum at the beginning of training.

The warmup period usually lasts for a few hundred to a few thousand iterations.

After the warmup period, the learning rate is gradually reduced over time using

a cosine annealing schedule. The cosine annealing schedule is a function that

smoothly decreases the learning rate to a small value over a fixed number of

iterations.

4.2.4 Loss Function

We use L1 loss for training which is also known as the mean absolute error

(MAE). It is calculated by taking the absolute differences between the predicted

and actual values, and then taking the mean of those differences. Mathematically,

L1 loss =
1

n
×
∑

|yi − ŷi|

The L1 loss function is less sensitive to outliers than the L2 loss function,

which is the mean squared error (MSE). This is because the absolute differences

between the predicted and actual values are not squared, and therefore outliers

do not have as much of an impact on the overall loss.
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4.3 Proposed Work

4.3.1 Cross Diffusion

We first propose cross diffusion model. Here, we first train diffusion models

independently for each of the instruments: guitar and violin. Let these models

be called Gguitar and Gviolin respectively.

Now, in the denoising process from diffusion model G, let the output from ith

denoising step be denoted as Gt(Yt+1), where Yt+1 denotes the output from the

previous denoising step.

Forward Diffusion on class A

Model B (Reverse)

Figure 4.2: Data flow in Cross Diffusion where an instance of class A is diffused
and an intermediate representation is denoised using model B

We hypothesize that denoising using a model Gi preserves salient features

of the partially noised version. Based on this we propose that for applying style

transfer from guitar to violin (could be any pair A to B in general), we can denoise

a diffused version of the guitar sample using Gviolin. Let us denote the diffused

input X upto timestep t as Dt(X), then mathematically:

XB = G0
B

(
G1

B

(
. . . Gt

B (Dt(XA)
))

(4.1)

In our experiments, we observed that this method works well for style trans-

fer from vocals to instruments as well, opening up a potential application for

generating accompanying music given a vocal sound track.

Since, we train models for each class independently, this means that the models

generated for the purpose of unconditional generation can be used for conditional
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generation. Moreover, we do not need to train diffusion model for the source class

as is evident from eq. (4.1) which only uses the model of target class.

4.3.2 Double Diffusion

We now propose double diffusion model which is based on the same hypothesis

as cross-diffusion model.

Model A (Reverse)

Model B (Reverse)

Figure 4.3: Data flow in Double Diffusion where model A generates a new output
from noise and an intermediate representation also denoised using model B

Here, during the unconditional generation from a diffusion model trained on

class A, we take an intermediate partially denoised version and denoise it through

diffusion models corresponding to each of the class. This way, we have generated

a pair of related audios.

XA = G0
A

(
G1

A

(
. . . Gt

A (DT (z)
))

(4.2)

XB = G0
B

(
G1

B

(
. . . Gt

B

(
Y t+1
A

)))
(4.3)

Since, we have a pair of generated audios with same underlying pattern, this

leads to a potential application of chorus generation.

In this case also, we train models for each class independently so the models

generated for the purpose of unconditional generation can be used for conditional

generation. However, we do require to train diffusion model for all the classes
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that we want to have output for as is evident from eqs. (4.2) and (4.3) which uses

the model of both the classes, unlike cross diffusion model.
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Chapter 5

Experiments and Results

5.1 Dataset and Evaluation Metric

For dataset, long audios of guitar and violin music were scrapped from the internet

which were then split into segments of 5 seconds.

The Fréchet audio distance (FAD) Kilgour et al. [2019] is a measure of sim-

ilarity between two audio signals, based on the concept of Fréchet distance Alt

and Godau [1995], which is a metric for comparing curves or paths in multi-

dimensional spaces. FAD is often used in audio processing applications such as

music analysis, sound recognition, and speech recognition.

Technically, FAD is calculated as the minimum distance between two con-

tinuous paths in a multi-dimensional space, where each dimension represents a

different acoustic feature of the audio signal.

To calculate the FAD between two audio signals, we first extract their feature

vectors and align them in time. Then, we calculate the distance between each pair

of feature vectors using a suitable distance metric, such as Euclidean distance.

We then compute the Fréchet distance between the two feature vectors using

an efficient algorithm such as the algorithm proposed by Alt and Godau [1995].

The resulting Fréchet distance is a measure of similarity between the two audio

signals, with lower values indicating greater similarity.

FAD has several advantages over other distance metrics such as dynamic time

warping (DTW) Keogh and Ratanamahatana [2005] and Euclidean distance.
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FAD is more robust to noise and distortion in the audio signal and can han-

dle variations in speed and tempo. Moreover, FAD is computationally efficient

and can be computed in polynomial time.

5.2 Cross Diffusion & Double Diffusion

We trained two unconditioned diffusion models – one on guitar and another one

on violin. Guitar to violin and violin to guitar style transfer was performed

using cross diffusion. In both experiments, first a few samples from the source

instrument were diffused to different degrees – no diffusion, 100, 200, 300, 400

steps out of 500 steps and complete 500 steps and then these were denoised using

the diffusion model of the target instrument. Because the input to the target is

partially denoised, so different denoising steps (out of total 50 steps) were tried.

The tables 5.1 and 5.2 contain the Frećhet audio distances. The rows and

columns represent the number of forward diffusion steps on source audio (out of

500) and the starting denoising steps (out of 50) respectively.

0 10 20 30 40

0 0.002 0.003 0.005 0.003 0.002

100 0.001 0.001 0.002 0.003 0.002

200 0.002 0.001 0.002 0.002 0.002

300 0.002 0.001 0.002 0.002 0.002

400 0.002 0.002 0.004 0.003 0.003

500 0.017 0.003 0.002 0.002 0.004

Table 5.1: Frećhet audio distances
for guitar to violin cross-diffusion us-
ing VGGish model

0 10 20 30 40

0 0.001 0.000 0.001 0.000 0.003

100 0.001 0.000 0.000 0.000 0.003

200 0.001 0.001 0.001 0.001 0.001

300 0.001 0.001 0.000 0.001 0.001

400 0.001 0.001 0.001 0.001 0.000

500 0.000 0.000 0.000 0.000 0.000

Table 5.2: Frećhet audio distances
for violin to guitar cross-diffusion us-
ing VGGish model

From the tables, it is clearly evident that the generation quality is rather good

as it lies well in the distribution of the corresponding instrument.

Following this, an end-to-end background music generation pipeline was made.

This takes a vocal sound track as input and generates violin and guitar music

corresponding to it. These tracks are cleaned by removing outlying high and low

frequency components. The resulting tracks are normalized to keep amplitude
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levels the same for all the audio tracks post which point-wise addition of these

tracks to vocal sound track is done, leading to the final song.

Having done analysis of how the performance of the model is affected by

the number of forward diffusion steps and the denoising steps in case of cross-

diffusion, we directly use 10 as the number of denoising split steps for double

diffusion.

Specifically, for our experiments, we generate paired piece of guitar and violin

music. These violin and guitar outputs are cleaned by filtering out very high and

low frequency components. The perceptual quality for these pairs was found to

be encouraging.
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Chapter 6

Conclusions

In this work, we have proposed two novel diffusion models, cross-diffusion and

double-diffusion, for audio generation tasks. We show that these models are

memory and speed efficient, making them suitable for real-time applications. The

cross-diffusion technique allows for conditional generation of high-quality audio

without compromising on the output quality. We evaluate the effectiveness of

this technique for instrument style transfer and generating background music for

a given piece of lyrical vocal audio. The double-diffusion technique, on the other

hand, is designed to produce an unconditional paired set of instrumental sounds

for chorus generation.

The experimental results demonstrated that the proposed models are com-

parable in terms of perceptual quality of the generated audio when compared

to the existing models while being significantly simple in terms of architecture

and having lower memory and computational requirements. This suggests that

diffusion models can be a promising approach for audio generation tasks.

We also analyzed the effect of different hyperparameters on the performance of

the model, and show that the number of forward diffusion steps and the denoising

steps have a very slight impact on the performance of the model. We find that the

perceptual quality of the generated audio is encouraging for both cross-diffusion

and double-diffusion models.

Overall, these results suggest that the proposed diffusion models are promising

for various audio generation applications such as music production, sound design,

and chorus generation. The ability to generate high-quality audio in real-time
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opens up new possibilities for interactive music and sound-based applications.
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Appendix A

1. Deriving loss function for Diffusion Models

− log (pθ(x0)) ≤ − log (pθ(x0)) + DKL (q (x1:T |x0) ||pθ(x1:T |x0))

≤ − log (pθ(x0)) + log

(
q (x1:T |x0)

pθ(x1:T |x0)

)
≤ − log (pθ(x0)) + log

(
q (x1:T |x0)

pθ(x0|x1:T )pθ(x1:T )
pθ(x0)

)

≤ − log (pθ(x0)) + log

(
q (x1:T |x0)
pθ(x0,x1:T )

pθ(x0)

)

≤ − log (pθ(x0)) + log

(
q (x1:T |x0)

pθ(x0:T )
pθ(x0)

)

≤ − log (pθ(x0)) + log

(
q (x1:T |x0)

pθ(x0:T )

)
+ log (pθ(x0))

≤ log

(
q (x1:T |x0)

pθ(x0:T )

)

≤ log


T∏
t=1

q(xt|xt−1)

pθ(xT )
T∏
t=1

pθ(xt−1|xt)



≤ − log (pθ(xT )) + log


T∏
t=1

q(xt|xt−1)

T∏
t=1

pθ(xt−1|xt)
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− log (pθ(x0)) ≤ − log (pθ(xT )) +
T∑
t=1

log

(
q(xt|xt−1)

pθ(xt−1|xt)

)

≤ − log (pθ(xT )) +
T∑
t=2

log

(
q(xt|xt−1)

pθ(xt−1|xt)

)
+ log

(
q(x1|x0)

pθ(x0|x1)

)

≤ − log (pθ(xT )) +
T∑
t=2

log

(
q(xt−1|xt, x0)q(xt|x0)

pθ(xt−1|xt)q(xt−1|x0)

)
+ log

(
q(x1|x0)

pθ(x0|x1)

)

≤ − log (pθ(xT )) +
T∑
t=2

log

(
q(xt−1|xt, x0)

pθ(xt−1|xt)

)
+

T∑
t=2

log

(
q(xt|x0)

q(xt−1|x0)

)
+ log

(
q(x1|x0)

pθ(x0|x1)

)

The term log
(

q(x1|x0)
pθ(x0|x1)

)
is constant and can be ignored. The term

T∑
t=2

log
(

q(xt|x0)
q(xt−1|x0)

)
forms a telescopic series, leading to a modified loss function as follows:

Lt =
T∑
t=2

log

(
q(xt−1|xt, x0)

pθ(xt−1|xt)

)
− log (pθ(x0|x1))

=
T∑
t=2

DKL (q(xt−1|xt, x0)||pθ(xt−1|xt)) − log (pθ(x0|x1))

Note that:

q(xt−1|xt, x0) ∼ N
(
xt−1; µ̃t(xt, x0), β̃tI

)
pθ(xt−1|xt) ∼ N (xt−1;µθ(xt, t), βI)

Here, we are trying to estimate the distributions µ̃t(xt, x0) as µθ(xt, t). We

have,
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µ̃t (xt, x0) =
1

√
αt

(
xt −

β√
1 − αt

ε

)
β̃t =

1 − αt−1

1 − αt

βt

The loss function can thus be expressed as follows since, the objective is to

make the two distributions as close to each other as possible.

Lt =
1

2σ2
t

∥∥∥∥ 1
√
αt

(
xt −

βt√
1 − αt

ε

)
− µθ(xt, t)

∥∥∥∥2

To simplify the expression, we can reparameterize µθ(xt, t) as:

µθ(xt, t) =
1

√
αt

(
xt −

βt√
1 − αt

εθ(xt, t)

)

Hence, we have a simplified loss function, given as:

Lt =
β2
t

2σ2
tαt(1 − αt)

∥ε− εθ(xt, t)∥2

We can safely drop off the constant. This leads to the final loss function:

Lt = ∥ε− εθ(xt, t)∥2

And, the denoising step can be expressed mathematically as follows:
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xt−1 =
1

√
αt

(
xt −

βt√
1 − αt

εθ(xt, t)

)
+
√
βtε
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Appendix B

Work done in CP302

During this project, we delved into the theoretical framework of diffusion models

and familiarized ourselves with the current state-of-the-art models in generative

AI. We explored the capabilities of diffusion models in computer vision tasks by

training on the Oxford flower dataset Nilsback and Zisserman [2006] and gener-

ating images. Through experimentation, we were able to generate high-quality

images by leveraging the power of diffusion models.

Additionally, we looked into conditioned diffusion models and how they can

be utilized to generate images after being trained on the MNIST-digit dataset

LeCun et al. [1998]. This allowed us to explore the concept of conditioning in

generative AI and how it can be used to manipulate the generated samples.

As we further explored the audio domain, we came across work on instrument

and vocal separation using Wave-U-Net Stoller et al. [2018]. We were fascinated

by the potential of these models to separate individual components of an audio

track, allowing for more precise editing and manipulation.

Furthering our exploration of audio-related applications, we studied CycleGAN-

VC Kaneko and Kameoka [2018], a technique for end-to-end style transfer on

speech audio. We successfully applied this technique to Mann Ki Baat, a popular

Indian radio program, allowing us to transform the speech style of the program

while preserving the content.

Throughout this project, we have gained a deeper understanding of the theo-

retical underpinnings of diffusion models and their potential applications in com-

32



puter vision and audio-related tasks. We have also explored various techniques

for conditioning and style transfer, and the potential impact they could have in

the field of generative AI. Our experimentation and exploration of these tech-

niques have given us a valuable insight into the future potential of generative AI

models.

The work done in CP302 helped us in understanding diffusion models and

audio, which further accelerated our work in CP303.

33



References

Helmut Alt and Michael Godau. Computing the fréchet distance between two
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